Chronic responses of inflammation and macrophage function to exercise training in various tissues of senescence mice

Autor(es): Uchida, Masataka; Horii, Naoki; Hasegawa, Natsuki; Fujie, Syumpei; Oyanagi, Eri; Yano, Hiromi; Iemitsu, Motoyuki

Publicado por: Imprensa da Universidade de Coimbra

URL persistente: URI:http://hdl.handle.net/10316.2/44105

DOI: DOI:https://doi.org/10.14195/2182-7087_ex2018_42

Conforme exposto nos referidos Termos e Condições de Uso, o descarregamento de títulos de acesso restrito requer uma licença válida de autorização devendo o utilizador aceder ao(s) documento(s) a partir de um endereço de IP da instituição detentora da supramencionada licença.

Ao utilizado é apenas permitido o descarregamento para uso pessoal, pelo que o emprego do(s) título(s) descarregado(s) para outro fim, designadamente comercial, carece de autorização do respetivo autor ou editor da obra.

Na medida em que todas as obras da UC Digitalis se encontram protegidas pelo Código do Direito de Autor e Direitos Conexos e demais legislação aplicável, toda a cópia, parcial ou total, deste documento, nos casos em que é legalmente admitida, deverá conter ou fazer-se acompanhar por este aviso.
ANNALS OF RESEARCH IN SPORT AND PHYSICAL ACTIVITY
CHRONIC RESPONSES OF INFLAMMATION AND MACROPHAGE FUNCTION TO EXERCISE TRAINING IN VARIOUS TISSUES OF SENESCENCE MICE

Masataka Uchida¹; Naoki Horii¹; Natsuki Hasegawa¹; Syumpei Fujie¹; Eri Oyanagi²; Hiromi Yano³; Motoyuki Iemitsu¹

KEY WORDS: Age-related chronic inflammation, macrophage, resistance training

INTRODUCTION

Aging induces chronic inflammation in whole-body and this chronic inflammation is associated with immune dysfunction. Moreover, the local inflammation is induced by macrophage infiltration and polarization and leads to several diseases, such as alzheimer’s disease, cardio vascular diseases and metabolic disorders¹. Regular aerobic exercise reduces circulating levels of inflammatory markers, such as IL-6 and TNF-α, in animal and human². However, the effect of different exercise manner on chronic inflammation in various tissues with aging remains unclear. The aim of this study was to investigate the effects of resistance and aerobic training on chronic inflammatory responses and macrophage infiltration and polarization in various tissues of senescence mice.

METHODS

Male 38-week-old senescence accelerated prone mouse 1 (SAMP1) mice, as a mouse model of accelerated senescence, were randomly divided into three groups: sedentary-control (Aged-con), aerobic training (Aged-AE), and resistance training (Aged-RT). After 12-week interventions, mRNA expression of inflammatory cytokines (TNF-a and IL-6) and macrophage markers (F4/80, CD11c and CD163) in various tissues were assessed by real-

¹ Faculty of Sport and Health Science, Ritsumeikan University.
² Department of Health Promotion and Exercise, National Institute of Health and Nutrition.
³ Department of Health and Sports Science, Kawasaki University of Medical Welfare.

Email: m-uchida@fc.ritsumei.ac.jp

https://doi.org/10.14195/2182-7087_ex2018_42
time RT-PCR with Taqman probe. Additionally, male 25-week-old SAMP1 mice were used as sedentary-control (Young-Con).

RESULTS

In Aged-Con group, mRNA expression of TNF-a in brain, adipose tissue, blood vessel, heart, liver and small intestine significantly increased as compared with Young-Con group. However, these mRNA expressions in Aged-AE and Aged-RT groups were attenuated and these expression levels were not differed with Young-Con group. Additionally, no significant difference of IL-6 mRNA in each organ among four groups was observed. Thus, aging-induced chronic inflammation in various tissues may be attenuated by aerobic and resistance training. In the chronic inflamed tissues of Aged-Con group, F4/80 mRNA expression was significantly or slightly higher than that of Young-Con group, but did not change in the brain. In contrast, F4/80 mRNA expression in these tissues of Aged-RT and Aged-AE group significantly reduced as compared with Aged-Con group. Furthermore, aging-induced increased in ratio of CD11c / CD163 mRNA expression was attenuated by resistance and aerobic exercise training.

CONCLUSION

These results indicate that resistance and aerobic training might prevent the chronic inflammation in various tissues with advancing age, and this phenomenon might be related to the change in the macrophage infiltration and polarization.

ACKNOWLEDGEMENTS

This work was supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (#26282199)

REFERENCES