Early life exercise promotes favorable changes in gut microbial ecology, persistent stress robustness, and metabolic health

Autor(es): Fleshner, Monika; Mika, Aggie
Publicado por: Imprensa da Universidade de Coimbra
URL persistente: URI:http://hdl.handle.net/10316.2/44079
DOI: DOI:https://doi.org/10.14195/2182-7087_ex2018_16


Conforme exposto nos referidos Termos e Condições de Uso, o descarregamento de títulos de acesso restrito requer uma licença válida de autorização devendo o utilizador aceder ao(s) documento(s) a partir de um endereço de IP da instituição detentora da supramencionada licença.

Ao utilizador é apenas permitido o descarregamento para uso pessoal, pelo que o emprego do(s) título(s) descarregado(s) para outro fim, designadamente comercial, carece de autorização do respetivo autor ou editor da obra.

Na medida em que todas as obras da UC Digitalis se encontram protegidas pelo Código do Direito de Autor e Direitos Conexos e demais legislação aplicável, toda a cópia, parcial ou total, deste documento, nos casos em que é legalmente admitida, deverá conter ou fazer-se acompanhar por este aviso.
EARLY LIFE EXERCISE PROMOTES FAVORABLE CHANGES IN GUT MICROBIAL ECOLOGY, PERSISTENT STRESS ROBUSTNESS, AND METABOLIC HEALTH”

Monika Fleshner¹ and Aggie Mika¹

KEY WORDS: Gut-Microbial-Brain Axis, Stress Robustness, Fecal Metabolites, Prebiotic diets, Early life exercise

Regular physical activity positively impacts mental and physical health. The benefits of physical activity are often revealed in the face of challenge, including mental/physical stressors. Evidence suggests that physical activity status is an important determinant of stress robustness. Organisms that are stress robust can endure more intense and prolonged stressors before suffering negative health consequences; and they recover more quickly from those challenges. To better understand the mechanisms of stress robustness using a preclinical model, we varied physical activity status by housing juvenile or adult rats (inbred and outbred strains) with access to either a mobile or locked running wheel in their home cages. After 3-6 weeks, rats housed with mobile running wheels display physical changes indicative of improved fitness, including increased endurance when tested on the treadmill, reduced abdominal adiposity when fed a high fat diet, increased lean body mass, changes in muscle citrate synthase etc. Most importantly for our work, however, is that physically active compared to sedentary rats have reduced adipose inflammation, no antibody suppression, no anxiety-like or depressive-like behaviors, and faster diurnal rhythm and sleep disturbance recovery, after exposure to an acute intense stressor (100, 1.5mA, 5-s tailshocks). Using this paradigm, we exploited the differences in stress robustness to reveal unique adaptations in stress responsive neurocircuitry that were necessary and sufficient for specific outcomes, including adaptations in serotonergic dorsal raphe neuronal responses responsible for anxiety-like and depressive like behaviors, and central sympathetic drive associated with immunomodulation. Our current work extends our assessment of adaptations produced by exercise to include commensal intestinal microbes (gut microbiota).

¹ Department of Integrative Physiology and the Center for Neuroscience, University of Colorado at Boulder, USA.

https://doi.org/10.14195/2182-7087_ex2018_16
The gut microbiota contributes to many aspects of host physiology. Changes in the gut microbiota early in development, for example, can impact host metabolism, immune function, and behavior that persist across the lifespan. In addition, the developing microbial ecosystem is more sensitive to change. We will present new evidence that physical activity 1) changes the gut microbial structure favoring a lean-promoting composition; 2) increases the abundance of beneficial microbial species; 3) increases butyrate-producing bacteria and butyrate, a short chain fatty acid implicated in metabolism and epigenetic processes. These effects are greater when running is initiated in adolescence compared to adulthood. Thus, early life presents a window of opportunity for producing adaptive changes in microbial composition that may contribute to some of the enduring positive impacts of exercise on mental and physical health.