Maximal strength training does not improve double poling performance in well trained junior female cross country skiers

Autor(es): Skattebo, Ø.; Hallén, J.; Rønnestad, B. R.; Losnegard, T.

Publicado por: Imprensa da Universidade de Coimbra

URL persistente: URI:http://hdl.handle.net/10316.2/34969

DOI: DOI:http://dx.doi.org/10.14195/2182-7087_5_8

Accessed: 14-Mar-2021 06:08:38

Conforme exposto nos referidos Termos e Condições de Uso, o descarregamento de títulos de acesso restrito requer uma licença válida de autorização devendo o utilizador aceder ao(s) documento(s) a partir de um endereço de IP da instituição detentora da supramencionada licença.

Ao utilizador é apenas permitido o descarregamento para uso pessoal, pelo que o emprego do(s) título(s) descarregado(s) para outro fim, designadamente comercial, carece de autorização do respetivo autor ou editor da obra.

Na medida em que todas as obras da UC Digitalis se encontram protegidas pelo Código do Direito de Autor e Direitos Conexos e demais legislação aplicável, toda a cópia, parcial ou total, deste documento, nos casos em que é legalmente admitida, deverá conter ou fazer-se acompanhar por este aviso.
MAXIMAL STRENGTH TRAINING DOES NOT IMPROVE DOUBLE-POLING PERFORMANCE IN WELL-TRAINED JUNIOR FEMALE CROSS-COUNTRY SKIERS
PURPOSE:

Performance in cross-country skiing is highly related to maximal aerobic capacity. Thus, a high volume of endurance training is a necessity. However, the introduction of sprint and mass start has increased the importance of generating high power outputs in parts of the races. Maximal strength and power output are closely related and maximal strength training has for decades been hypothesized to have a beneficial effect on endurance performance. Therefore, the present study investigated the effect of supplementing a high volume of endurance training with maximal strength training on performance and predictors of performance in female cross-country skiers.

METHODS:

Sixteen competitive female cross-country skiers (17 ± 1 yrs, 60 ± 6 kg, 169 ± 6 cm, 59.6 ± 4.5 ml · kg⁻¹ · min⁻¹) were assigned either to an intervention group (INT; n=9) or a control group (CON; n=7). The intervention period was conducted in late preparation phase, lasted 10 weeks and consisted of two weekly maximal strength sessions on the upper-body muscles. Before pre and post testing, subjects conducted extensive familiarizations on equipment and protocols in which performance (poling ergometer) and 1-repetition maximum (RM) strength (seated pull-down) were tested. Measurements included submaximal O₂-cost, anaerobic power (AnP; 20sec all-out from rest), sprint abilities (SpA; 3min all-out from rest), finishing abilities (FiA; 3min all-out after a prolonged fatiguing load) and VO₂peak.

1 Norwegian School of Sport Sciences, Department of Physical Performance, Oslo, Norway
2 Lillehammer University College, Lillehammer, Norway
STATISTICS:

Data were log transformed before calculating relative changes, group-differences (mean ± 90% CI) and magnitude of difference (Cohen’s d effect size (ES)). Pre-post and group interactions were respectively analyzed with Student’s paired t-test and two-way repeated measures ANOVA.

RESULTS:

1RM-strength increased more in INT (23.8 ± 4.8%; p<0.01; ES: 2.22) than in CON (7.9 ± 6.6%; p<0.05; ES: 0.33) with a groups difference of 14.7 ± 7.9% (p<0.01; ES: 0.90). The changes in AnP, SpA and FiA were similar for both groups (difference: -0.6 to -1.8%; p>0.6; ES: -0.04 to -0.07). AnP increased 17.1 ± 5.7% (p<0.01; ES: 1.13) in INT and 15.7 ± 4.4% (p<0.01; ES: 0.46) in CON. SpA increased 17.1 ± 6.9% (p<0.01; ES: 1.04) in INT and 16.2 ± 3.0% (p<0.01; ES: 0.48) in CON. FiA increased 14.9 ± 4.9% (p<0.01; ES 1.06) in INT and 13.1 ± 3.5% (p<0.01; ES: 0.33) in CON. Changes in VO$_2$-peak showed a small group difference (-3.9 ± 4.8%; p>0.1; ES: -0.42), with a trivial change in INT (0.6 ± 1.9%; p>0.5; ES: 0.05) and a small increase in CON (4.7 ± 5.0%; p>0.1; ES: 0.58). Relative O$_2$-cost at three loads between 60 and 80% of VO$_2$-peak showed small group differences (-3.1 to -3.4 %; p>0.2; ES: -0.29 to -0.34), with small decreases in INT (-6.3 to -4.2%; p<0.05 to p=0.15; ES: -0.57 to -0.46) and trivial-small changes in CON (-3.3 to -1.1%; p>0.2; ES: -0.36 to -0.11).

CONCLUSIONS:

Supplementing an already high volume of endurance training with maximal strength training in the late preparatory period for top junior female athletes had trivial-small effects on O$_2$-cost and short-lasting performance.

REFERENCES

